• Логин
    Пароль

Астрономия

Тестирование онлайн

    материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

    Жизнь звезды

    Водородно-гелиевый газ в галактиках должен был распадаться на небольшие облака, которые коллапсировали под действием собственного тяготения. При сжатии атомы в них сталкивались и температура газа росла, пока не достигала величины, необходимой для начала реакций ядерного синтеза. Эти реакции преобразуют водород в гелий и похожи на управляемый взрыв водородной бомбы. Выделяемое при этом тепло заставляет звезды светиться. Это тепло также увеличивает давление газа, пока это последнее не приходит в равновесие с силами тяготения. В результате газ перестает сжиматься. Примерно так газовые облака становятся звездами, подобными нашему Солнцу, которые сжигают водород, превращая его в гелий, и излучают высвободившуюся энергию в форме тепла и света. Они обнаруживают отдаленное сходство с воздушным шаром, в котором внутреннее давление воздуха на стенки, заставляющее шар расширяться, уравновешивается упругостью резиновой оболочки, стремящейся уменьшить размер шара.

    Сформировавшись из облаков горячего газа, звезды в течение долгого времени сохраняют устойчивость благодаря балансу между выделением тепла в ядерных реакциях и гравитационным притяжением. Однако рано или поздно звезда обречена исчерпать свой запас водорода и другого ядерного топлива. Парадоксально, но чем больше запасы топлива в звезде, тем быстрее они заканчиваются. Дело в том, что чем массивнее звезда, тем горячее она должна быть, чтобы сбалансировать свое тяготение. А чем горячее звезда, тем быстрее протекает реакция ядерного синтеза и быстрее расходуется топливо. Нашему Солнцу, вероятно, хватит топлива еще на пять миллиардов лет или около того, но более массивные звезды способны израсходовать свои ресурсы всего за сто миллионов лет, что значительно меньше возраста Вселенной.

    Когда звезда исчерпывает топливо, она начинает остывать и гравитация берет верх, вызывая сжатие. Сжатие сближает атомы, заставляя звезду снова разогреться. При достаточном нагреве звезда может начать преобразовывать гелий в более тяжелые элементы, такие как углерод и кислород. Это, однако, высвобождает не слишком много энергии, так что кризис неизбежен. Что случается дальше, не вполне ясно, но весьма вероятно, что центральные области звезды коллапсируют, переходя в очень плотное состояние, становясь, например, черной дырой.

    Вспышка сверхновой

    Иногда при коллапсе очень массивной звезды ее внешние слои могут быть выброшены в пространство колоссальным взрывом, называемым вспышкой сверхновой. Мощь этого взрыва настолько велика, что сверхновая светит ярче всех звезд целой галактики вместе взятых. Примером может служить сверхновая Крабовидной туманности. Китайские летописи относят ее к 1054 году. Хотя взорвавшаяся звезда находилась на расстоянии 5000 световых лет, она оставалась видимой для невооруженного глаза в течение нескольких месяцев и сияла столь ярко, что была различима даже днем, а ночью при ее свете можно было читать. Вспышка сверхновой в 500 световых годах от нас – в десять раз ближе Крабовидной туманности – оказалась бы в сто раз ярче и буквально превратила бы ночь в день. Чтобы почувствовать мощь подобного взрыва, представьте, что вспышка соперничала бы с сиянием Солнца, даже притом, что звезда находилась бы в десятки миллионов раз дальше него (напомним, что Солнце находится всего в восьми световых минутах от Земли). Достаточно близкая вспышка сверхновой звезды хотя и не разрушила бы Землю, но сопровождалась бы излучением, способным убить все живое на нашей планете. Недавно было высказано предположение, что происшедшее два миллиона лет назад вымирание морских организмов было вызвано всплеском космического излучения, порожденного вспышкой сверхновой вблизи от Земли. Некоторые ученые считают, что высокоорганизованная жизнь может развиться только в тех областях галактик, где не слишком много звезд, – так называемых зонах жизни, – поскольку в районах более плотного скопления звезд вспышки сверхновых – столь обычные явления, что они периодически уничтожают любые зачатки биологической эволюции. Каждый день во Вселенной вспыхивают сотни тысяч сверхновых звезд. В отдельной галактике сверхновые появляются примерно раз в столетие. Но это средние показатели. К сожалению (для астрономов, по крайней мере), последняя вспышка сверхновой в Млечном Пути произошла в 1604 году, еще до изобретения телескопа.

    Главной претенденткой на роль следующей сверхновой в нашей Галактике является звезда ро Кассиопеи. К счастью, она находится на вполне безопасном для нас расстоянии 10 000 световых лет. Она относится к немногочисленному классу желтых сверхгигантов. Во всем Млечном Пути имеется лишь семь звезд этого типа. Международная группа астрономов начала изучать ро Кассиопеи в 1993 году. За прошедшие годы у звезды наблюдались периодические колебания температуры на несколько сотен градусов. Затем, летом 2000 года, температура ее внезапно упала примерно с 7000 до 4000 градусов. В это время исследователи обнаружили в атмосфере звезды окись титана, которая, как считается, входит в состав оболочки, выброшенной с поверхности звезды мощной ударной волной.

    При вспышке сверхновой ряд тяжелых элементов, образовавшихся в конце жизненного цикла звезды, выбрасывается назад в межзвездную среду, становясь сырьем для формирования следующего поколения звезд. Наше Солнце содержит приблизительно 2% таких тяжелых элементов. Это звезда второго или третьего поколения, которая сформировалась приблизительно пять миллиардов лет назад из облака вращающегося газа, содержавшего выбросы ранних сверхновых. Большая часть газа из того облака пошла на формирование Солнца либо была выброшена вовне, но небольшая часть тяжелых элементов смогла собраться вместе и образовать подобные Земле планеты, которые теперь обращаются вокруг Солнца. И золото в наших украшениях, и уран в наших ядерных реакторах – все это остатки сверхновых звезд, которые вспыхнули еще до рождения Солнечной системы!